Off-axis Neutrinos

Gina Rameika Fermilab May 20, 2006

Outline

- Introduction
 - The Questions to Answer
 - The Equations
 - The Experimental Approach
- The Off-Axis Technique
 - The Basic Concept
 - The Experiments we can do
 - The Measurements we can make
 - The Physics we can extract
 - NuMI Off-Axis
 - Application in NOvA
 - Application for a NOvA2
- On-going Work input to the LBL study
- Conclusions

The Questions

(in order of increasing difficulty)

- What is $\sin^2\theta_{13}$?
- What is the order of the neutrino mass hierarchy?
- Is CP violated in the neutrino sector?
 - i.e. is $\delta \neq 0, \pi$?

The Answers: a staged approached

- Step 1 : Current Program
 - operations 2005 2009-10
 - NuMI to MINOS
 - L = 735 km on-axis
 - LE beam
 - 12e20 POT
- Step 2 : Proposed Program
 - 2011 2016
 - NuMI to NOvA
- Step 3 : Current Discussion
 - A decade from now
 - Where we start, depends on outcome
 - of Steps 1, 2 and other worldwide efforts

The Answers: a staged approached

- Step 1 : Current Program
 - operations 2005 2009-10
 - NuMI to MINOS
 - L = 735 km on-axis
 - LE beam
 - 12e20 POT
- Step 2 : Proposed Program
 - 2011 2016
 - NuMI to NOvA
- Step 3 : Current Discussion
 - A decade from now
 - Where we start, depends on outcome of Steps 1, 2 and other worldwide efforts

Accelerator Programs

Accelerator Programs

Neutrino Mixing Matrix

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$
atmospheric

The Equations

The simple version :

$$P(v_a \rightarrow v_b) = \sin^2 2\theta_{ab} \sin^2 (1.27\Delta m_{ab}^2 L/E)$$

- Works for the dominant oscillation mode
 - $v_{\mu} \rightarrow v_{\tau}$ Atmospheric
- Extend the simple version to the subdominant mode :

$$P_{\rm vac}\left(\nu_{\rm \mu} \rightarrow \nu_e\right) = \sin^2\theta_{\rm 23} \sin^22\theta_{\rm 13} \sin^2\Delta_{\rm atm} \; , \label{eq:pvac}$$

$$\Delta_{atm} \approx 1.27 \left(\frac{\Delta m_{32}^2 L}{E} \right),$$

The Equations continue

Matter effects

$$P_{mat}\left(v_{\mu} \to v_{e}\right) \approx \left(1 \pm 2 \frac{E}{E_{R}}\right) P_{vac}\left(v_{\mu} \to v_{e}\right)$$

$$E_{R} = \frac{\Delta m_{32}^{2}}{2\sqrt{2}G_{F}N_{e}} = 12 \text{ GeV}\left(\frac{\Delta m_{32}^{2}}{2.5 \times 10^{-3} \text{ eV}^{2}}\right) \left(\frac{1.4 \text{ g cm}^{-3}}{Y_{e}\rho}\right)$$

CP phase....

$$\Delta P_{\delta}(\nu_{\mu} \rightarrow \nu_{e}) \approx J_{r} \sin \Delta_{sol} \sin \Delta_{atm} (\cos \delta \cos \Delta_{atm} + \sin \delta \sin \Delta_{atm}),$$

$$J_{r} = \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13},$$

The Experimental Approach

- Depends on the "initial conditions"...
 - Existing accelerator ?
 - Proton/neutrino energies
 - Existing beamline ?
 - Beam direction
 - Desireable site ?
 - Baseline
 - Underground?
 - On surface?
 - Existing Detector ?
 - Detection threshold/efficiency
 - Baseline

The Experimental Approach

- Depends on the "initial conditions"...
 - Existing accelerator ?
 - Proton/neutrino energies
 - Existing beamline ?
 - Beam direction
 - Desireable site ?
 - baseline
 - Underground?
 - On surface?
 - Existing Detector ?
 - Detection threshold/efficiency
 - Baseline

Fermilab:
50 - 120 GeV protons
NuMI beam:
neutrinos aimed down
At 57 mrad to Soudan,
Minnesota 700 km <L< 900km

The Experimental Approach

- Existing Conditions or Optimized Parameters (i.e.)
 - baseline (L)
 - initial beam composition $(v_u, \overline{v_u}, v_e)$
 - unoscillated energy spectrum (E)
 - detection efficiency

... will determine

- # of events expected in the absence of oscillation
- Physics will determine
 - # of events (of each flavor)
 - appearing and disappearing due to oscillation parameters, CP phase and matter effects
 - v and anti-v rates differ due to mass hierarchy and CP phase
- Multiple measurements are needed to disentangle effects

Variable Energy NuMI Beam

Oscillations at L = 735 km

L determined by an existing Laboratory

Presentation to NuSAG May 20, 2006

Dominant $v_{\mu} \rightarrow v_{\mu}$ disappearance a.k.a. MINOS

The Experimental Approach: "NuMI North"

The Off-axis concept

May 20, 2006

Sub-dominant $\nu_{\mu} \rightarrow \nu_{e}$ appearance

Example :

$$L = 810 \text{ km}$$

 $\Delta m^2_{23} = 0.0025$
 $\theta_{23} = 0.642$
 $\theta_{13} = 0.15$

Event Rates at the 1st Maximum

$$P_{vac}\left(v_{\mu} \rightarrow v_{e}\right) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\Delta_{atm},$$

$$\Delta_{atm} \approx 1.27 \left(\frac{\Delta m_{32}^2 L}{E} \right),$$

- Determining θ_{13}
 - Input physics parameters :
 - $\sin^2\theta_{23}$
 - $\Delta m^2_{atm} \sim \Delta m^2_{32}$
 - Neutrino cross sections
 - Input experimental parameters
 - Protons per year
 - Neutrino spectrum
 - Detector Location (L, Δx)
 - Detector fiducial mass, efficiency Presentation to NuSAG May 20, 2006

Oscillations affected by matter

Presentation to NuSAG May 20, 2006

Oscillations affected by matter

Create a beam: 810 km, 14 mr off xis

Presentation to NuSAG May 20, 2006

Change horn currents (anti-neutrinos)

But life isn't simple...

And we have no idea what δ is...

Measurements?

Oscillations affected by matter

Presentation to NuSAG May 20, 2006 Normal hierarchy

NuMI Off-axis - 40 mrad (32 km)

$\nu_{\mu} \rightarrow \nu_{e}$ appearance

Presentation to NuSAG May 20, 2006 Example : L = 810 km $\Delta m_{23}^2 = 0.0025$

Event Rates

L = 810 km 12 km OA 20 kt fiducial 20e20 pot (~3yrs) (for each mode) $\Delta m_{23}^2 = 0.003$ $\theta_{13} = 0.15$ Normal hierarchy

Event Rates

L = 810 km 40 km OA 20 kt fiducial 20e20 pot (~3yrs) (for each mode) $\Delta m_{23}^2 = 0.003$ $\theta_{13} = 0.15$ Normal hierarchy

Backgrounds

Fig. 2.8: Simulated energy distributions for the ν_e oscillation signal, intrinsic beam ν_e events, neutral-current events and ν_μ charged-current events with and without oscillations. The simulation used $\Delta m^2_{32} = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2(2\theta_{23}) = 1.0$, and $\sin^2(2\theta_{13}) = 0.04$. An off-axis distance of 12 km at 810 km was assumed.

Backgrounds (cont)

Conclusions (1)

- An Off-axis neutrino beam is a powerful tool for measuring oscillation parameters and the neutrino mass heirarchy
- The success of experiments using this technique depend heavily on the ability of the proton source to deliver lots of protons
- In the best of worlds $\sin^2 2\theta_{13} \sim 0.1$ the experiments are difficult and take a long time to proceed through the list of questions
- If nature is cruel, $\sin^2 2\theta_{13} \sim 0.01$, we will most likely need multi-megawatt proton beams aimed at megaton detectors.

Conclusions (2)

- FMI Operations (January 2005 -February 2006)
 have delivered 1.4e20 protons to the NuMI target
 (1.3e20 in the Low energy configuration)
- MINOS experiment is counting on getting ~3e20 protons/year for 2007 - 2009
- The NOvA experiment is planning on ~> 6.5e20/year (700 kw) starting in 2011 (see Alberto's talk)

Conclusions (3)

- An off-axis experiment at the 2nd oscillation maximum will require :
 - increased protons (> 1 MW) ?
 - more mass (50 100 kton) ?
 - higher efficiency (~80%)?
 - longer running time (10 yrs) ?
- Measuring the neutrino sector CP phase
 - priceless

On-going/Upcoming Work

- Complete event rate analysis for 1st and 2nd maximum at L~810 (12 and 32 km off-axis)
- Study L~250km sensitivity
- Study sensitivity at longer baselines (1500, 2500 km)
- Validate background estimates for beam
- Compare to wide band beam scenarios

A final comment

- In addition to the experiments being difficult from the signal to background point of view, collecting a handful events/year for many years will require some new thinking about how to manage and retain experimental collaborations
- Expanding the capability of the detectors to have more physics reach may be a necessary investment